Invasion Ecology of Aquatic Animals FAS 4932 (3 credits) Spring, 2020

Course Description

A comprehensive overview of invasion ecology, highlighting aspects related to aquatic animals, including ecological concepts and debates underlying this developing field; biology and life history of nonnative aquatic animals, including characteristics of successful invaders; risk analysis methodology; and the conservation and regulatory implications of nonnative aquatic species.

Instructor

Jeffrey E. Hill, Ph.D.

jeffhill@ufl.edu

SFRC Program in Fisheries and Aquatic Sciences UF/IFAS Tropical Aquaculture Laboratory (TAL)

1408 24th Street SE

Ruskin, FL 33570

813-671-5230 x118

Office hours: Available by email or phone; office visits available by appointment. Note that the instructor is located about 2 hrs from main campus and will be most available for discussion in Gainesville before and after class.

Graduate Teaching Assistant

Allison Durland Donahou

adurland@ufl.edu

UF/IFAS School of Natural Resources and the Environment Office hours: Available for meetings on campus or by email, Skype, or phone

Student Learning Outcomes

At the end of this course, each student will:

- understand the concepts associated with species invasions
- use basic risk assessment methodology
- think critically to evaluate literature and arguments, especially when faced with uncertainty and scientific disagreement
- more effectively communicate orally and in scientific writing
- appreciate the complex relationship between science, management, and regulation

Course Meeting Times

Wednesday Periods 7-9 (1:55-4:55 pm); MCCD Goo1 (*MCCB 3086 on 1/8, 1/22, and 2/19)

Required Readings

There is no required text for the course. Some important texts that I draw heavily upon for the course are listed as "Additional References," below. Required readings will be provided in Canvas and will include the following papers which must be read by about the date specified below as they will be discussed in class and participation is expected.

Papers	Read by:
Colautti, R.I., and H.J. MacIsaac. 2004. A neutral terminology to define	Jan 8
'invasive' species. Diversity and Distributions 10: 135-141.	
Beck et al. 2008. Invasive species defined in a policy context:	
recommendations from the federal Invasive Species Advisory	
Committee. Invasive Plant Science and Management 1:414-421.	
Hill, J.E. 2008. Non-native species in aquaculture: terminology, potential	
impacts, and the invasion process. USDA-Southern Regional	
Aquaculture Center Publication No. 4303.	
Velleger et al. 2011. Homogenization patterns of the world's freshwater fish	Jan 15
faunas. Proceedings of the National Academy of Sciences 108:18003-	
18008.	
Fitzgerald, D.B., M. Tobler, and K.O. Winemiller. 2016. From richer to	
poorer: successful invasion by freshwater fishes depends on species	
richness of donor and recipient basins. Global Change Biology	
22:2440-2450.	
Hill, J.E. 2008. Non-native species in aquaculture: terminology, potential	Jan 22
impacts, and the invasion process. USDA-Southern Regional	
Aquaculture Center Publication No. 4303.	
Catford et al. 2009. Reducing redundancy in invasion ecology by	
integrating hypotheses into a single theoretical framework.	
Diversity and Distributions 15:22-40.	
Blackburn et al. 2011. A proposed unified framework for biological	
invasions. Trends in Ecology and Evolution 26:333-339.	
Gozlan, R.E. 2008. Introduction of non-native freshwater fish: is it all bad?	Jan 29
Fish and Fisheries 9: 106-115.	
Vitule, J.R., C.A. Freire, and D. Simberloff. 2009. Introduction of non-	
native freshwater fish can certainly be bad. Fish and Fisheries 10:	
98-108.	
Courtenay, Jr., W.R. 1997. Nonindigenous fishes. Pages 109-122 in D.S.	Feb 5
Simberloff, D.C. Schmitz, and T.C. Brown, editors. Strangers in	
Paradise, Island Press.	

Shafland, P.L. 1996. Exotic fish assessments: an alternative view. Reviews in	
Fisheries Science 4:123-132.	
Trexler, J.C., W.F. Loftus, F. Jordan, J.J. Lorenz, J.H. Chick, and R.M. Kobza.	
2000. Empirical assessment of fish introductions in a subtropical	
wetland: an evaluation of contrasting views. Biological Invasions	
2:265-277.	
Schofield, P.J., and W.F. Loftus. 2015. Non-native fishes in Florida	
freshwaters: a literature review and synthesis. Reviews in Fish	
Biology and Fisheries 25:117-145.	P-1
Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the	Feb 12
environmental and economic costs associated with alien-invasive	
species in the United States. Ecological Economics 52: 273-288.	
Blackburn et al. 2014. A unified classification of alien species based on the	
magnitude of their environmental impacts. PLoS Biology	
12(5):e1001850. Hill, J.E. 2002. Exotic fishes in Florida. LakeLines, North American Lake	Feb 26
Management Society 22(1):39-43.	Teb 20
Shafland et al. 2008. Florida's exotic freshwater fishes—2007. Florida	
Scientist 71:220-245.	
Hill, J.E. 2009. Risk analysis for non-native species in aquaculture. USDA-	March 18
Southern Regional Aquaculture Center Publication No. 4304.	Widicii io
Copp, G.H. 2013. The Fish Invasiveness Screening Kit (FISK) for non-native	
freshwater fishes—a summary of current applications. Risk Analysis	
33:1394-1396.	
Roy et al. 2017. Developing a framework of minimum standards for the risk	
assessment of alien species. Journal of Applied Ecology. DOI:	
10.1111/1365-2664.13025.	
Hardin, S., and J.E. Hill. 2012. Risk analysis of Barramundi Perch Lates	March 25
calcarifer aquaculture in Florida. North American Journal of	
Fisheries Management 32:577-585.	
Hill, J.E., and K.M. Lawson. 2015. Risk screening of Arapaima, a new	
species proposed for aquaculture in Florida. North American	
Journal of Fisheries Management 35:885-894.	
Neal et al. 2017. Evaluation of proposed Speckled Peacock Bass Cichla	
temensis introduction to Puerto Rico. North American Journal of	
Fisheries Management 37:1093-1106.	
Vander Zanden, M.J., and J.D. Olden. 2008. A management framework for	April 8
preventing the secondary spread of aquatic invasive species.	
Canadian Journal of Fisheries and Aquatic Sciences 65: 1512-1522.	
Kolar et al. 2010. Chapter 8. Managing undesired and invading fishes.	
Pages 213-259 in Hubert and Quist (editors). Inland fishery	
management in North America, 3rd ed. American Fisheries Society,	
Bethesda, MD.	
DeRivera, C. E., G.M. Ruiz, A.H. Hines, and P. Jivoff. 2005. Biotic	April 15
Resistance to Invasion: Native predator limits abundance and	

distribution of an introduced crab. Ecology 86 (12): 3364-3376.	
Jeschke, J. 2014. General Hypotheses in Invasion Ecology. Diversity and	
Distributions 20:1229-1234.	
Henriksson, A., J. Yu, D.A. Wardle, and G. Englund. 2015. Biotic resistance	
in freshwater fish communities: species richness, saturation or	
species identity? Oikos 124:1058-1064.	
Shea, K. and P. Chesson. 2002. Community ecology theory as a framework	April 22
for biological invasions. Trends in Ecology and Evolution 17: 170-176.	
White et al. 2006. Biotic indirect effects: a neglected concept in invasion	
biology. Diversity and Distributions 12:443-455.	
Zenni, R.D., and M.A. Nunez. 2013. The elephant in the room: the role of	
failed invasions in understanding invasion biology. Oikos 122:801-	
815.	

Additional, supplemental readings will be provided in Canvas. These supplemental readings will be provided for each lecture topic and by invited speakers.

Class Format, Policies on Attendance and Make-up Exams

The course is a classroom-based, lecture and discussion format. No specific pre-requisites are required but the class is intended for advanced undergraduates. Given the broad scope of the field of invasion ecology, the course will cover diverse topics, each requiring a base of knowledge for the course to build upon. Students should have prior coursework in biology and have an understanding of basic ecological concepts.

Attendance records will not be maintained, but it is the responsibility of the student to maintain satisfactory progress in the course and to make up all work. Late project assignments will be penalized 10% on the first day and 5% on each subsequent day. Missed quizzes cannot be taken after the scheduled date without prior written consent of the instructor except under exceptional circumstances. Cases of serious illness, bereavement, or activities covered under the Twelve-Day Rule will be considered for make-up. Appropriate documentation must be provided in all cases.

Requirements for class attendance and make-up exams, assignments, and other work in this course are consistent with university policies that can be found at: https://catalog.ufl.edu/ugrad/current/regulations/info/attendance.aspx.

Students are expected to turn off all cell phones, messaging devices, or other communications devices during class unless specifically allowed by the instructor.

Assignments

Projects **MUST** be turned into the instructor before class ends on the due date. There will be a penalty for late projects. Make prior arrangements and expect to turn projects in early if there are conflicts with the schedule.

- Species Synopsis Students will choose a non-native aquatic species of relevance to Florida and write a brief species synopsis. The species may be freshwater, estuarine, or marine and must be a non-plant taxon. Species will be chosen in consultation with the course instructor to prevent student overlap. A detailed outline of the project requirements will be provided during class. In brief, students will conduct literature and internet searches to obtain information on the occurrence, life history, ecology, effects, and regulatory status of the species and write a fact sheet summarizing this information and pointing out gaps in knowledge.
- Risk Assessment Students will participate in teams to conduct a risk assessment using the Federal Aquatic Nuisance Species Task Force RAM Committee Generic Analysis method or a risk screen using the Fish Invasiveness Screening Kit (FISK or related FISK-like variant) or the U.S Fish and Wildlife Service Ecological Risk Screening Summary (ERSS) on a select group from the class species synopses. Teams will provide a copy of their completed risk assessment along with a short narrative explaining their methodology and results. More detailed information and requirements will be posted in Canvas.
- Exams There will be two exams (a midterm and final). These will cover all information in lectures, readings, and from invited speakers. Species profiles and risk assessments (except what is covered in lecture), and topic reviews will not be covered on exams.

Evaluation of Student Learning (Undergraduate Student)

20% Species Synopsis 25% Mid-Term exam 20% Risk assessment 25% Final exam 10% Discussion participation

Grading Scale

A 94-100%; A- 90-93; B+ 86-89; B 83-85; B- 80-82; C+ 76-79; C 73-75; C- 70-72; D+ 66-69; D 63-65; D- 60-62; E <60%

https://catalog.ufl.edu/graduate/regulations/#text

Schedule of Class Topics

WEEK	DATE	TOPIC	ASSIGNMENTS
1	Jan 8	Introduction/Pathways of Introduction	*MCCB 3086
2	Jan 15	Biogeography/Invasion Process	
3	Jan 22	Stages of Invasion Process	Species Choice Due; *MCCB 3086
4	Jan 29	Invasion Process Theory	
5	Feb 5	Impacts	
6	Feb 12	Impacts	
7	Feb 19	Classic Case Studies	Species Profiles Due; Review/Data Set Topic Due; *MCCB 3086
8	Feb 26	Florida Case Studies /Review	
9	Mar 4	Spring Break—No Class	
10	Mar 11	Risk Analysis/Risk Assessment	Mid-Term Exam
11	March 18	Risk Assessment	
12	March 25	Risk Assessment Case Studies	
13	April 1	Management Techniques/Case Studies	
14	April 8	International, Federal, and State Management and Policy	Risk Assessment Presentation
15	April 15	Ecological Theory	
16	April 22	Ecological Theory/Review	Topic Reviews or Data Papers Due
	April 30		Final Exam (Thursday 12:30-2:30 pm)

Additional References

Davis, M.A. 2009. Invasion Biology. Oxford University Press.

Elton, C.E. 1958. The Ecology of Invasions by Animals and Plants. Revised edition (2000). The University of Chicago Press.

Lockwood, J.L., M.F. Hoopes, and M.P. Marchetti. 2007. Invasion Ecology. Blackwell Publishing.

Williamson, M. 1996. Biological Invasions. Chapman & Hall.

Online Evaluation

Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times

when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

Other Information

Honor Pledge

UF students are bound by The Honor Pledge which states, "We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: "On my honor, I have neither given nor received unauthorized aid in doing this assignment." The Honor Code (https://sccr.dso.ufl.edu/students/student-conduct-code/) specifies a number of behaviors that are in violation of this code and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor or TAs in this class.

Software Use

All faculty, staff and students of the university are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against university policies and rules, disciplinary action will be taken as appropriate.

Campus Helping Resources

- Contact information for the Counseling and Wellness Center:
 https://counseling.ufl.edu/, 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.
- Career Resource Center, First Floor JWRU, 392-1601, www.crc.ufl.edu/

Students with Disabilities

Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, www.dso.ufl.edu/drc/) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.